Publications

Publications

 

Beirute-Herrera, J., Calvo, B.L.-A., Edenhofer, F., Esk, C., 2023. The promise of genetic screens in human in vitro brain models. Biol. Chem.0. https://doi.org/10.1515/hsz-2023-0174

Li, C., Fleck, J.S., Martins-Costa, C., Burkard, T.R., Themann, J., Stuempflen, M., Peer, A.M., Vertesy, Á., Littleboy, J.B., Esk, C., Elling, U., Kasprian, G., Corsini, N.S., Treutlein, B., Knoblich, J.A., 2023. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380. https://doi.org/10.1038/s41586-023-06473-y

Hagelkruys, A., Horrer, M., Taubenschmid-Stowers, J., Kavirayani, A., Novatchkova, M., Orthofer, M., Pai, T.-P., Cikes, D., Zhuk, S., Balmaña, M., Esk, C., Koglgruber, R., Moeseneder, P., Lazovic, J., Zopf, L.M., Cronin, S.J.F., Elling, U., Knoblich, J.A., Penninger, J.M., 2022. The HUSH complex controls brain architecture and protocadherin fidelity. Sci Adv 8, eabo7247. https://doi.org/10.1126/sciadv.abo7247

Vértesy, Á., Eichmüller, O.L., Naas, J., Novatchkova, M., Esk, C., Balmaña, M., Ladstaetter, S., Bock, C., Haeseler, A., Knoblich, J.A., 2022. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. Embo J 41, e111118. https://doi.org/10.15252/embj.2022111118

Pflug, F.G., Haendeler, S., Esk, C., Lindenhofer, D., Knoblich, J.A., Haeseler, A. von, 2022. Neutral competition within a long-lived population of symmetrically dividing cells shapes the clonal composition of cerebral organoids. Biorxiv 2021.10.06.463206. https://doi.org/10.1101/2021.10.06.463206

Esk, C*., Lindenhofer, D*., Haendeler, S., Wester, R.A., Pflug, F., Schroeder, B., Bagley, J.A., Elling, U., Zuber, J., Haeseler, A. von, Knoblich, J.A., 2020. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941. https://doi.org/10.1126/science.abb5390

Camus, S.M., Camus, M.D., Figueras-Novoa, C., Boncompain, G., Sadacca, L.A., Esk, C., Bigot, A., Gould, G.W., Kioumourtzoglou, D., Perez, F., Bryant, N.J., Mukherjee, S., Brodsky, F.M., 2019. CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 219, 2693–21. https://doi.org/10.1083/jcb.201812135

Wimmer, R.A., Leopoldi, A., Aichinger, M., Wick, N., Hantusch, B., Novatchkova, M., Taubenschmid, J., mmerle, M.H. x000E4, Esk, C., Bagley, J.A., Lindenhofer, D., Chen, G., Boehm, M., Agu, C.A., Yang, F., Fu, B., Zuber, J., Knoblich, J.A., Kerjaschki, D., Penninger, J.M., 2019. Human blood vessel organoids as a model of diabetic vasculopathy. Nature Publishing Group 1–34. https://doi.org/10.1038/s41586-018-0858-8

Fededa, J.P., Esk, C., Mierzwa, B., Stanyte, R., Yuan, S., Zheng, H., Ebnet, K., Yan, W., Knoblich, J.A., Gerlich, D.W., 2016. MicroRNA‐34/449 controls mitotic spindle orientation during mammalian cortex development. Embo J 35, 2386–2398. https://doi.org/10.15252/embj.201694056


Majeed, S.R., Vasudevan, L., Chen, C.-Y., Luo, Y., Torres, J.A., Evans, T.M., Sharkey, A., Foraker, A.B., Wong, N.M.L., Esk, C., Freeman, T.A., Moffett, A., Keen, J.H., Brodsky, F.M., 1AD. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Comms 5, 1–14. https://doi.org/10.1038/ncomms4891


Hoshino, S., Sakamoto, K., Vassilopoulos, S. phane, Camus, S. phane M., Griffin, C.A., Esk, C., Torres, J.A., Ohkoshi, N., Ishii, A., Tamaoka, A., Funke, B.H., Kucherlapati, R., Margeta, M., Rando, T.A., Brodsky, F.M., 2013. The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration. PLoS ONE 8, e77787. https://doi.org/10.1371/journal.pone.0077787.s002


Xie, Y., Jüschke, C., Esk, C., Hirotsune, S., Knoblich, J.A., 2013. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex. Neuron.https://doi.org/10.1016/j.neuron.2013.05.027

Esk, C., Chen, C.-Y., Johannes, L., Brodsky, F.M., 2010. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. J Cell Biol 188, 131–144. https://doi.org/10.1083/jcb.200908057

Vassilopoulos, S.*, Esk, C.*, Hoshino, S.*, Funke, B.H., Chen, C.-Y., Plocik, A.M., Wright, W.E., Kucherlapati, R., Brodsky, F.M., 2009. A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science 324, 1192–1196. https://doi.org/10.1126/science.1171529

Meyerholz, A., Hinrichsen, L., Groos, S., Esk, C., Brandes, G., Ungewickell, E.J., 2005. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6, 1225–1234.https://doi.org/10.1111/j.1600-0854.2005.00355.x